You can perform arithmetic operators like “+”, “-”, “*”, “/”, and “//” in a data frame.

Import the library:

import pandas as pd

Read the dataset:

# Expanded data dictionary with 30 samples and new departments
data = {
    "WorkerID": list(range(31)),
    "Age": [25, None, 35, 30, 24, 28, None, 32, 27, None, 33, 29, 40, 50,
            45, 37, 31, 34, 26, 38, 48, 27, 41, 32, 29, 47, 46, 33, 39, 36, 30],
    "Salary": [50000, 54000, None, 58000, 45000, 60000, 49000, None, None,
               47000, 55000, 60000, 52000, 64000, 51000, 47000, 58000, 54000,
               57000, 53000, 60000, 55000, 56000, 59000, 55000, 62000, 61000, 53000, 58000, 56000, 60000],
    "Department": ["HR", "Finance", "IT", "HR", "IT", "Finance", "IT",
                   "HR", "Finance", "HR", "AI", "Marketing", "Business",
                   "Finance", "IT", "Marketing", "AI", "HR", "Business",
                   "Finance", "IT", "AI", "HR", "Business", "Marketing", "HR",
                   "Finance", "IT", "Business", "AI", "HR"]
}

# Convert to DataFrame
df = pd.DataFrame(data).fillna(30)  # Fill in the missing values with 30
df['Salary'] = df['Salary'].replace(30, 40000)  # Replace the salary to 40000
# Combine Worker ID and Department with a coma between them
df['Worker Department'] = df['WorkerID'].astype(str) + ', ' + df['Department']
print(df['Worker Department'])

Output:

0             0, HR
1        1, Finance
2             2, IT
3             3, HR
4             4, IT
5        5, Finance
6             6, IT
7             7, HR
8        8, Finance
9             9, HR
10           10, AI
11    11, Marketing
12     12, Business
13      13, Finance
14           14, IT
15    15, Marketing
16           16, AI
17           17, HR
18     18, Business
19      19, Finance
20           20, IT
21           21, AI
22           22, HR
23     23, Business
24    24, Marketing
25           25, HR
26      26, Finance
27           27, IT
28     28, Business
29           29, AI
30           30, HR
Name: Worker Department, dtype: object
# Combine the age and salary
df['Salary + Age'] = df['Salary'] + df['Age']
print(df[['Salary', 'Age', 'Salary + Age']])

Output:

     Salary   Age  Salary + Age
0   50000.0  25.0       50025.0
1   54000.0  30.0       54030.0
2   40000.0  35.0       40035.0
3   58000.0  30.0       58030.0
4   45000.0  24.0       45024.0
5   60000.0  28.0       60028.0
6   49000.0  30.0       49030.0
7   40000.0  32.0       40032.0
8   40000.0  27.0       40027.0
9   47000.0  30.0       47030.0
10  55000.0  33.0       55033.0
11  60000.0  29.0       60029.0
12  52000.0  40.0       52040.0
13  64000.0  50.0       64050.0
14  51000.0  45.0       51045.0
15  47000.0  37.0       47037.0
16  58000.0  31.0       58031.0
17  54000.0  34.0       54034.0
18  57000.0  26.0       57026.0
19  53000.0  38.0       53038.0
20  60000.0  48.0       60048.0
21  55000.0  27.0       55027.0
22  56000.0  41.0       56041.0
23  59000.0  32.0       59032.0
24  55000.0  29.0       55029.0
25  62000.0  47.0       62047.0
26  61000.0  46.0       61046.0
27  53000.0  33.0       53033.0
28  58000.0  39.0       58039.0
29  56000.0  36.0       56036.0
30  60000.0  30.0       60030.0