pandas.DataFrame.drop — pandas 2.3.2 documentation
You can insert columns (or rows) or drop columns (or rows) in data frame.
Import the library:
import pandas as pd
Prepare the data frame
data = {
"WorkerID": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
"Age": [25, None, 35, 30, 24, 28, None, 32, 27, None],
"Salary": [50000, 54000, None, 58000, 45000, 60000, 49000, None, None, 47000]
}
df = pd.DataFrame(data)
print("Original DataFrame:\\n", df)
Output:
Original DataFrame:
WorkerID Age Salary
0 1 25.0 50000.0
1 2 NaN 54000.0
2 3 35.0 NaN
3 4 30.0 58000.0
4 5 24.0 45000.0
5 6 28.0 60000.0
6 7 NaN 49000.0
7 8 32.0 NaN
8 9 27.0 NaN
9 10 NaN 47000.0
You can insert a new column by simply specifying the columns with some values.
# Insert a new column
df["Department"] = ["HR", "Finance", "IT", "HR", "IT", "Finance", "IT", "HR", "Finance", "HR"]
print("DataFrame after inserting 'Department' column:\\n", df)
Output:
DataFrame after inserting 'Department' column:
WorkerID Age Salary Department
0 1 25.0 50000.0 HR
1 2 NaN 54000.0 Finance
2 3 35.0 NaN IT
3 4 30.0 58000.0 HR
4 5 24.0 45000.0 IT
5 6 28.0 60000.0 Finance
6 7 NaN 49000.0 IT
7 8 32.0 NaN HR
8 9 27.0 NaN Finance
9 10 NaN 47000.0 HR
You can also insert a new row to the data frame using df.loc()
.
# Insert a new row
df.loc[len(df)] = [11, 29, 55000, "HR"]
print("DataFrame after inserting new row:\\n", df)